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Abstract 

The surface of Venus is characterized by extreme temperature and a crushing pressure. However, at altitudes between 
51 to 62 km, conditions resemble Earth's surface, making it an ideal location for a proposed mission concept that 
involves deploying a balloon with a suspended science gondola, known as an aerobot. Due to the planet's extreme wind 
conditions, with gusts reaching up to 100 m/s, and the complexities of balloon dynamics in the atmosphere, detailed 
models of wind gusts are critical to predict the aerobot’s dynamics. Unfortunately, previous missions have only 
collected surface wind data and vertical gusts, leaving horizontal gusts data missing.  
The goal of this paper is to present the development of a systematic method to generate wind gust model capable of 
capturing the highly non-stationary and random characteristics of wind gusts from real-time data. The model is fitted 
to data collected during terrestrial flight tests, so it can be used in predictive simulations of the Venus aerobot behavior 
in Earth field experiments. The proposed approach relies on a set of stochastic differential equations, specifically a 
bidimensional Ornstein-Uhlenbeck process, to accurately represent the autocorrelation function and probability density 
function of a measured wind signal. The first function captures the “memory effect” of the signal, while the second 
one serves as a tool for reproducing the observed instantaneous distribution of wind direction and speed.  
The proposed method was tested using real-world wind speed measurement data collected by Jet Propulsion 
Laboratory during flight tests in the Mojave Desert. An extended Kalman filter was used to process the real-time wind 
signal captured by measurement instruments before incorporating it into the model. This filter adeptly captures the 
dynamics of an atmospheric balloon, and efficiently fuses data from inertial measurement units and wind measurement 
instruments.  
Results indicate that the proposed method is simple to implement and can accurately capture simultaneously the 
autocorrelation and probability distribution of wind speed measurement data, and holds promise as a tool for design of 
future Venus aerobots.  
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Acronyms/Abbreviations 

ACF Autocorrelation Function 
ARMA Autoregressive Moving Average 
BCM Buoyancy Control Module 
CDF Cumulative Distribution Function 
ECDF Empirical Cumulative 

Distribution Function 
EKF Extended Kalman Filter 
IMU Inertial Measurement Unit 
INS Inertial Navigation System 
JPL Jet Propulsion Laboratory 
OU Ornstein-Uhlenbeck 
PDF Probability Density Function 
RMSE Root Mean Squared Error 

SDE Stochastic Differential Equation 
 

 
1. Introduction 

 
1.1 Motivation 

Venus is the nearest planet to the Earth, observed 
since ancient times as the beautiful, brilliant morning or 
evening ‘star’ in the night sky. Venus is also the celestial 
body most similar to ours in size, mass and composition. 
The planet has an especially thick carbon dioxide 
atmosphere, which creates, together with its global 
sulfuric acid cloud cover, an extreme greenhouse effect. 
This results at the surface in a mean temperature of 464°C 
and a crushing pressure of 92 times that of Earth’s at sea 
level, turning the air into a supercritical fluid. However, 
at altitudes between 51 to 62 km above the surface where 
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clouds are located, the pressure, temperature, and 
radiation are similar to those at Earth’s surface [1], with 
recent research having found suggestive, but not 
definitive, evidence of the biomarker phosphine, possible 
evidence of life. Venus may have had liquid surface 
water early in its history, possibly enough to form oceans. 

The recent selection of two Venus orbiters, NASA’s 
VERITAS (Venus Emissivity, Radio Science, InSAR, 
Topography, and Spectroscopy) and ESA’s EnVision, as 
well as NASA’s DAVINCI (Deep Atmosphere Venus 
Investigation of Noble gases, Chemistry, and Imaging) 
entry probe, will fulfill many of the objectives sought by 
the NASA Venus science community. However, the 
subsequent 2023-2032 Planetary Science and 
Astrobiology Decadal Survey notes that other Venus 
science objectives remain largely unaddressed by these 
missions, fundamentally because they require long 
duration in-situ measurements from within the 
atmosphere [2].  

Due to environmental constraints on the planet, 
landed surface missions are confronted with unique 
technological hurdles. Conversely, aerial platforms 
operating within the cloud layer can provide in-situ 
access within the atmosphere under more favorable 
thermal conditions. This has motivated a strong 
technology development focus on Venus aerial platforms 
at NASA’s Jet Propulsion Lab (JPL). 

A recent NASA-sponsored study on Venus Aerial 
platforms found that aerial platforms that can control 
altitude occupy the sweet spot in the trade space, and that 
there are no technology show-stoppers to their adoption 
for future NASA missions [3]. Specifically, long-
duration variable altitude balloons based on lighter-than-
air vehicle technology seem to be a highly promising 
solution. These vehicles consume electrical power to 
change altitude via gas pumping, instead of traditional 
balloon techniques of ballast drops and venting of 
buoyancy gas that permit flights of only limited duration 
before exhausting the consumables. This application 
tends to be more interested in the ability of the balloon to 
scientifically explore a wide range of altitudes in the 
clouds as compared to current terrestrial balloons that use 
altitude control mostly as a means to effect trajectory 
control, which is challenging in Venus atmosphere. 
Furthermore, balloon platforms have operated on Venus 
before [4]: the Soviet VeGa missions included two small 
7 kg balloon probes that flew for approximately 48 hours 
in the cloud layer. 

The term "aerobot," which combines the words 
"aeronautical" and "robot," is used to describe a robotic 
balloon vehicle that autonomously exercises trajectory 
and/or altitude control. In this paper, the term "aerobot" 
will be used to refer to the complete robotic vehicle, 
which comprises the balloon, payloads (mounted on a 
platform designated as a gondola), and tethers. 

Venus exhibits a distinctive vertical wind profile, 
characterized by predominantly east-to-west zonal winds 
between altitudes of approximately 10-100 km. These 
zonal winds intensify with altitude from 10 to 65-70 km, 
peaking at speeds around 100 m/s at 65 km, generating 
horizontal wind gusts [5]. 

The aerobot, characterized only by a vertical control 
of the motion, navigates through the atmosphere 
propelled by zonal winds, which determine its horizontal 
trajectory and carry the vehicle around the planet in 
approximately 5 to 6 Earth-days. Additionally, the wind 
patterns influence the dynamics of the gondola, 
suspended under the balloon by means of tethers, 
potentially causing torsional effects which excite the 
payload dynamics. 

Several numerical models ([6,7]) are available to 
simulate atmospheric circulation on Venus, largely 
derived from the legacy of Pioneer Venus and subsequent 
soviet Venera missions, and images from Venus Express, 
has provided three-dimensional wind speed maps at 
various altitudes within the cloud layer [8]. However, 
none of the missions that have ventured into the planet's 
atmosphere have recorded in-situ continuous wind speed 
measurements. Accordingly, stochastic, physics-based 
wind models that are representative of typical planetary 
winds that a balloon might encounter are required for the 
design of future Venus aerobots. 
 
1.2 Literature review 

A wide range of wind speed models are available in 
the literature for Earth applications, primarily focusing 
on wind speed forecasting and modeling forecast errors. 
Discrete Autoregressive Moving Average (ARMA) 
models are the most common and have been widely used 
for short-term forecasting [10,11]. Additionally, first-
order and higher-order Markov chains have been 
extensively used to model wind speed [12,13], including 
applications in planetary exploration [14]. Physical 
models that use meteorological information have also 
been employed for long-term wind speed prediction [10], 
though they are not applicable in this context. 

Both ARMA models and Markov chains are discrete 
in time and require a fixed time step that matches the 
sampling interval of the available data. This constraint 
limits their use in transient stability analysis for an 
aerobot, which involves assessing the dynamic response 
to rapid changes in wind conditions. Discrete models, 
with their fixed time intervals, may not capture these fast 
variations accurately, potentially compromising the 
precision of the analysis. Therefore, continuous wind 
speed models are often preferable, as they can provide 
the necessary high temporal resolution and 
responsiveness for effective transient stability 
assessment. Although methods exist to define a 
continuous-time equivalent of ARMA models, these 
procedures introduce numerical approximations and 
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require complex modeling, further affecting the precision 
needed for detailed dynamic analysis of the aerobot. 

In recent years, the use of stochastic differential 
equations (SDEs) for wind speed modeling has gained 
popularity. SDEs appear more suitable than classical 
discrete time series approaches as they are intrinsically 
continuous with respect to time and are not constrained 
to use the sampling time step of the original measurement 
data. 

 
1.3 Contributions 

The contribution of this work is to propose a 
systematic method to generate stochastic wind models 
based on SDEs that can generate continuous wind data 
and is representative of wind speed trends in the Venus's 
atmosphere. To achieve this, the model captures and 
reproduces statistical properties of real wind 
measurements: the autocorrelation function (ACF) and 
the probability density function (PDF).  The ACF is a 
measure of how the wind speed changes over time. That 
is, the ACF gives a measure of the relationship between 
the current wind speed value and past wind speed values, 
introducing a memory effect. The memory effect in the 
model allows the historical evolution of the wind to be 
considered, enabling a more realistic and complete 
representation of its characteristics.  The PDF describes 
the likelihood that the wind speed will assume a value 
within a given range.  
This enables the approach to be used in in-situ 
applications during the mission, leveraging the wind 
speed data recorded by the instruments. This data can be 
employed to support autonomous balloon guidance 
techniques [9]; in addition, it can be used to support 
Earth-based field tests when fitted to measurements of 
wind speeds on Earth. 
 
1.4 Organization 

The structure of this paper is as follows: Section 2 
provides an overview of key concepts related to SDEs. 
Section 3 introduces the theoretical framework for the 
proposed wind speed model synthesis method. Section 4 
explains the parameter identification process for SDE 
models using wind speed data. Section 5 details the wind 
data collection and processing methods during a Earth 
field test, while Section 6 discusses the application of 
these data to validate the wind model. Lastly, Section 7 
summarizes the findings and suggests avenues for future 
research. 
 
2. Stochastic Differential Equation  

A SDE in the Itô sense is a differential equation that 
describes the time evolution of random phenomena under 
uncertainty. It is given in the one-dimensional form as 
follows: 

 
𝑑𝑋(𝑡) = 𝑓(𝑋(𝑡), 𝑡)𝑑𝑡 + 𝐿(𝑋(𝑡), 𝑡)𝑑𝑊(𝑡) (1) 

where the continuous functions f(𝑋(𝑡), 𝑡) and 𝐿(𝑋(𝑡), 𝑡) 
represent the so-called drift and volatility terms, 
respectively.  The drift and diffusion terms of (1) 
determine the statistical properties of the variable X(t), 
which in our case, represents the wind speed. The 
building block of our model is the standard Wiener 
process W(t ) [15], which introduces randomness into the 
SDE (1). The equation (1) can be expressed in integral 
form as follows: 

 
𝑋(𝑡) = 𝑋(𝑡!) +
∫ 𝑓(𝑋(𝑠), 𝑠)𝑑𝑠 +"
"!

∫ 𝐿(𝑋(𝑠), 𝑠)𝑑𝑊(𝑠)"
"!

                    (2) 
 
where 𝑋(𝑡!) is the initial condition which is a random 
variable. The first integral is an ordinary Riemann-
Stieltjes integral, while the second integral is defined as 
the Itô stochastic integral. This is because the Wiener 
process cannot be integrated in the conventional 
Riemann-Stieltjes sense, as it is not bounded. 

A comprehensive examination of SDEs is beyond the 
scope of this paper. For further details on the theory and 
numerical methods of SDEs, the interested reader is 
referred to Refs. [16, 17]. 

 
2.1 Ornstein-Uhlenbeck process 

The Ornstein-Uhlenbeck (OU) process [18] is a 
special case of the stochastic process with the tendency 
to return to a certain (constant or time-varying) level with 
bounded variance around it, called mean reversion. The 
OU process is defined as the solution of the following 
SDE: 

 
𝑑𝑋(𝑡) = −𝜆𝑋(𝑡)𝑑𝑡 + 𝜃𝑑𝑊(𝑡)    ( 3 ) 
 

where 𝜆 is the decay rate and measures how strongly the 
process responds to perturbations, and 𝜃 > 0 is the size of 
the perturbation W(t).  

This process is characterized by a normal distribution 
with zero mean and standard deviation 𝜃#/(2𝜆), and by 
an exponential autocorrelation whose decay rate is 
governed by the coefficient 𝜆, i.e., 

 
𝑅$(𝜏) = 𝑒%&'   ( 4 ) 
 

where τ is the time lag. 
The OU process, widely used in finance, physics, and 

other scientific fields, is suitable for modeling physical 
processes such as wind fluctuations due to its bounded 
variance [18]. 

To synthesize wind speed models, we chose to 
employ as the foundational building block the following 
2-dimensional Ornstein-Uhlenbeck process: 

 

6𝑑𝑋(𝑡)𝑑𝑌(𝑡)8 = 9−𝛼 −𝜎
𝜎 −𝛼<6

𝑋(𝑡)
𝑌(𝑡)8 𝑑𝑡 + 9

𝜃
0< 𝑑𝑊(𝑡)  (5) 
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where 𝛼 > 0, 𝜎 > 0, 𝜃 > 0.  
The choice of this particular process was driven by 

the form of the ACF linked to X(t), which can be 
identified by examining the covariance function of the 
system. Given the matrix structure in the SDE, the decay 
rate 𝜆  is related to the eigenvalues of the matrix 
9−𝛼 −𝜎
𝜎 −𝛼<, which are:  

 
𝜆(,# = −𝛼 ± 𝑖𝜎				                                                      (6) 
 
These eigenvalues indicate a complex exponential 

decay, where the real part −α represents the rate of 
exponential decay and the imaginary part σ introduces 
oscillatory behavior. The presence of σ means that the 
process will not only revert to the mean over time, but 
will also exhibit periodic fluctuations around this mean. 
Considering the eigenvalues, the ACF of X(t) can be 
expressed as: 

 
𝑅$(𝜏) = 𝑒%*' cos(𝜎	𝜏)                                            (7) 
 
The exponentially decaying and oscillatory nature of 

X(t)’s ACF is particularly suitable for modeling 
stochastic wind speed dynamics. Specifically: 

 
• Exponential decay: This characteristic represents the 

loss of correlation over time, effectively capturing 
the diminishing influence of past wind speeds. 
 

• Oscillatory behavior: This aspect reflects periodic 
patterns or cycles in wind speed, such as diurnal 
variations or regular gust patterns. 

 
For this reason X(t) process is specifically used for 

constructing the wind speed model. 
Note that for σ = 0, X(t) and Y(t) are decoupled and 

X(t) becomes a one-dimensional OU process, as in 
Equation (3). 

 
 
3. The mathematical model 

As outlined in Section 1, the objective of the model is 
to accurately replicate the ACF and PDF of real wind 
speed measurements. The process of constructing the 
desired compound stochastic model involves two 
primary steps: 

 
• Capturing the ACF: The model uses an SDE in the 

form of Equation (5) to capture the desired ACF. 
This involves determining the appropriate 
coefficient values that allow the model to match the 
ACF of the real wind speed data. Since a single SDE 
may not provide an optimal fit, a weighted sum of 
multiple SDEs is employed to achieve a more 
accurate representation. 

• Imposing the PDF: After defining the superposition 
of SDEs to capture the ACF, an analytical or 
numerical memoryless transformation is applied. 
This transformation adjusts the process to conform 
to the desired PDF, ensuring that the statistical 
properties of the modeled wind speed align with 
those of the observed data. 

 
 
3.1 ACF modeling 

Using a weighted sum of multiple SDEs in the form 
of (7) can improve the fit of the resulting wind model, 
capturing multi-modal effects with different time scales 
and velocity distributions. Accordingly, the proposed 
stochastic process comprises a weighted sum of SDEs, as 
follows: 

 
𝐹(𝑡) = ∑ H𝜔+𝑋+(𝑡),

+-( 	                                            (8) 
 

where X.(t) are processes with ACF in the form of (7) 
and the weights  𝜔+ > 0	must be 

 
∑ 𝜔+ = 1,
+-( 						                                                         (9) 

 
 The ACF of the process is the weighted sum of the n 

ACFs of the n SDEs processes: 
 
𝑅/(𝜏) = ∑ 𝜔+𝑅$"(𝜏)

,
+-( 	                                          (10) 

 
If the n SDEs X(t) are processes as in (5), the resulting 

ACF of F(t) is a weighted sum of damped sinusoidal and 
decaying exponential functions, that is: 

 
𝑅/(𝜏) = ∑ 𝜔+𝑒%*"' cos(𝜎+ 	𝜏),

+-( 	   ( 11 ) 
 
If all n processes have an identical Gaussian PDF 

𝒩(𝜇$, 𝜃$) , the stochastic process F(t) has the same 
Gaussian PDF 𝒩(𝜇$, 𝜃$). If the ACF does not show a 
periodic behavior then 𝜔+ = 0, ∀𝑖 = 1,… , 𝑛. 

 
3.2 PDF modeling 

The probability density function of the wind speed is 
typically not Gaussian, while the process F(t) in (8) has a 
Gaussian PDF. To impose the target PDF of the wind 
speed, a memoryless transformation is applied [19]. This 
approach converts a standard Gaussian stochastic process 
into another process with a different PDF that matches 
the desired wind speed characteristics, while preserving 
the correlation structure between the data points. 

This memoryless transformation is obtained by 
applying the Gaussian cumulative distribution function 
(CDF)  ϕ(⋅) to the inverse CDF of wind data Z-1 (∙): 

 
𝐹0(𝑡) = 𝑍%( 9𝜙U𝐹(𝑡)V<                                         (12) 
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The resulting process is the target SDE with the 
desired PDF and ACF. 

 
4. Model implementation 
 
4.1 ACF fitting 

In order to characterize the autocorrelation function 
of wind data, a fitting procedure is employed. This 
procedure utilizes a non-linear regression model, which 
involves the optimization of coefficients representing a 
weighted sum of exponential and/or damped sinusoidal 
functions. Initially, a range of potential models with 
varying numbers of components is defined. 
Subsequently, a genetic algorithm is employed to identify 
an optimal initial set of coefficients for each candidate 
model. The ACF data is then fitted to each model using 
the fitnlm function in MATLAB, which iteratively 
adjusts the model coefficients to minimize the root mean 
squared error (RMSE) between the fitted curve and the 
actual ACF data. This iterative process continues until a 
stopping criterion based on the RMSE and R-squared 
values is met, ensuring an accurate representation of the 
ACF. 

 
4.2 Integration of SDE 

From the fitting routine, the coefficients of the most 
suitable model, along with the corresponding number of 
components, are selected to create the superposition 
stochastic differential equation that accurately captures 
the autocorrelation function of the wind data. These 
coefficients, comprising the weights, damping factors, 
and frequencies, define the dynamics of the SDE model. 
Subsequently, the SDE is numerically integrated over a 
specified time interval to generate a stochastic process 
F(t) that simulates the temporal evolution of the wind 
speed. 

An analysis comparing different stochastic 
integration methods identified the most suitable 
integration technique for accurately simulating the 
stochastic processes underlying the wind dynamics. 

The selection was based on the stability criterion of 
the methods [20]. The Euler-Maruyama and Exponential 
methods were found to be highly sensitive to initial 
conditions, integration step size, and integration interval. 
The latter two elements are crucial for reproducing the 
autocorrelation function. In fact, to capture the same 
correlation function in the generated signal, it is 
necessary for the integrator to allow the signal to be 
generated for a sufficient time for the correlation to 
develop and for the integration step to be smaller than the 
input signal sampling rate. 

In contrast, Heun’s method demonstrates reduced 
sensitivity to the previously mentioned parameters. For 
this reason, it has been selected as the integrator to test 
the model. 

Furthermore, system stability is strongly determined 
by the characteristics of the equation itself, particularly 
depending on the coefficients obtained from the fit. Once 
the fit is performed, it is essential to study the eigenvalues 
of the system of two equations and eliminate any 
components of the overlap that have eigenvalues with 
positive real part. 
 
4.3 PDF fitting 

The PDF can be defined in two ways, analytically or 
numerically. When dealing with irregular wind speed 
distributions, defining the probability density function 
numerically is often preferred over an analytical 
approach. This preference arises due to the flexibility and 
adaptability of numerical methods in capturing complex 
distributions accurately. 

Analytical approaches typically rely on predefined 
mathematical functions or models (e.g., Gaussian) to 
describe the PDF. However, these functions may struggle 
to accurately represent distributions that are irregular or 
have multiple peaks. In such cases, forcing an analytical 
function to fit the data may result in a poor representation 
and inaccurate predictions. 

On the other hand, numerical methods, such as kernel 
density estimation or histogram-based approaches, offer 
more flexibility in capturing the intricacies of irregular 
distributions. These methods do not rely on predefined 
functional forms but instead directly estimate the PDF 
from the data itself. By dividing the data into bins or 
using kernel functions, numerical methods can provide a 
more faithful representation of the underlying 
distribution, even when it is complex.  

Among the many possible numerical techniques to 
approximate the probability distribution of a set of 
measurements, the empirical cumulative distribution 
function (ECDF) is considered. The ECDF provides a 
non-parametric estimate of the CDF based directly on the 
observed data points. The empirical cumulative 
distribution function is constructed by sorting the N data 
points in ascending order, assigning each data point a 
cumulative probability of  (

1
, and plotting these 

probabilities against the corresponding sorted data 
values. This process results in a step function where each 
step increases by (

1
 for each data point. To obtain an 

approximation of the continuous CDF, linear 
interpolation is applied to the ECDF. 
 
5. Wind data 
 
5.1 Data Collection 

 In July 2023, engineers at NASA’s JPL conducted 
two high-altitude balloon launches to simulate the 
dynamics of the Venus Aerobot concept. The 
experimental setup consisted of a lower plate 
representing the gondola, an upper plate serving as the 
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buoyancy control module (BCM), and a sounding 
balloon. Both plates were equipped with instruments to 
collect data. 

The payloads incorporated an array of sensors 
tailored for comprehensive data collection. These 
included a barometer, thermistors, and an inertial 
navigation system (INS) unit installed on each plate. The 
INS unit comprised a combined GPS, gyroscope, 
magnetometer, and accelerometer, facilitating precise 
tracking of the plate’s motion. An experimental 
anemometer was deployed to measure relative wind 
speed using differential pressure transducers and 
orthogonally mounted pitot tubes. An external thermistor 
and an internal barometer were included to measure 
temperature and atmospheric pressure, respectively, 
allowing for air density calculations. The gondola was 
not airtight to permit pressure equalization. Extensive 
data were gathered to analyze the dynamics and 
configurations of the tethers between the balloon and 
gondola; this data can also be used to fit a wind model 
and validate its accuracy, as detailed next. 

The launches were conducted at the Lucerne Lakebed 
in the Mojave Desert, California. Both balloons 
successfully completed their flights and were 
subsequently recovered. During Flight 1, the balloon 
ascended to an altitude of approximately 31,274 meters, 
while Flight 2 reached a maximum altitude of 32,084 
meters. 
 
5.2 Data processing 
The procedure for computing the relative wind speed 
from the pressure measured by the pitot tubes and air 
density involves utilizing Bernoulli’s equation. 
The anemometer measures the difference between wind 
speed and the balloon’s velocity. Thus, it only detects 
changes in wind speed relative to the balloon, not 
absolute wind speed. By analyzing these relative 
velocities, one cannot distinguish between actual wind 
gusts and changes due to the balloon’s movement. This 
distinction is crucial for accurately assessing 
meteorological conditions. To calculate the absolute 
wind speed from the relative wind speed, the system's 
velocity must be determined. This information is 
provided by GPS units installed on both the gondola and 
the BCM. However, the civilian GPS systems used in the 
flights do not function above approximately 18 km in 
altitude, causing GPS data, including velocity, to be 
unavailable during high-altitude flights. Moreover, GPS 
technology cannot be utilized for a mission on Venus, 
motivating interest in the development of a GPS-free 
estimator. 
 
5.2.1 Extended Kalman Filter 

In the absence of direct velocity measurements, 
velocities can be derived from inertial measurement unit 
(IMU) recorded accelerations using an extended Kalman 

filter (EKF). The balloon system's nonlinear motion 
dynamics, especially during wind gusts, necessitate this 
approach. For precise state estimation, we employ a 
continuous-time formulation in the prediction step to 
accurately capture dynamic behavior, while a discrete 
formulation is used in the update step to match sensor 
sampling frequencies. This results in a Continuous-
Discrete or Hybrid EKF. To determine the balloon's 
atmospheric movement speed, it is sufficient to filter data 
from the BCM’s IMU, ignoring the relative dynamics 
between the plates caused by tethers. 

The estimated states of the system include the three 
components of the balloon's position 𝒙𝒃 , the three 
components of the balloon's velocity �̇�𝒃, and the three 
components of the absolute wind velocity �̇�𝒘 . The 
measurements for the state estimation include the 
balloon’s acceleration from accelerometers, and the 
relative wind velocity. 

The primary ascent dynamic is driven by the balloon 
itself, requiring a simplified 3D dynamic model where 
the balloon is treated as a point mass subject to external 
forces. These forces include the buoyancy force FB 
following Archimedes’ principle, aerodynamic drag 
forces FD due to wind and atmospheric motion and 
gravitational force Fg: 

 
𝑭𝑩 = 𝜌5+6 ∙ 𝑉 ∙ 𝒈	                                                   (13) 
 
𝑭𝑫 =

(
#
∙ 𝜌5+6 ∙ 𝐶8 ∙ 𝑆 ∙ (�̇�𝒃 − �̇�𝒘)#                         (14) 

 
𝑭𝒈 = 𝒈 ∙ U𝑚:;< +𝑚: +𝑚= +𝑚=5>V		                 (15) 
 

where 𝜌5+6  is the density of surrounding air, V is the 
volume of the balloon considered as a sphere of radius R, 
𝒈 is the gravitational acceleration, CD is the balloon drag 
coefficient set to 0.47, equivalent to that of a sphere, S is 
the balloon’s effective area perpendicular to the flow 
considered as a circle of radius R, 𝑚:;< is the mass of 
the buoyancy control module plate, 𝑚: is the mass of the 
balloon envelope, 𝑚=  is the mass of the gondola plate 
and 𝑚=5> is the mass of the gas inside the balloon. The 
linear motion of the balloon then follows Newton’s law  

�̈�𝒃 =
𝑭𝑩%𝑭𝑫%𝑭𝒈

<&'(@<&@<)@<)*+
	                                         (16) 

 
As the balloon ascends, it expands with altitude until 

it bursts at a maximum size due to the elastic properties 
of its material. The balloon's radius, modeled as a sphere, 
changes during ascent. While complex models account 
for heat exchange and pressure variation [21], in this 
paper we use a simpler model focusing only on material 
expansion due to pressure changes, employing the 
hyperelastic Mooney-Rivlin formula to capture the 
nonlinear behavior of the elastic material [22].  
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The absolute wind, on the other hand, is modeled in 
the Kalman filter’s predictor as a constant, set to its initial 
value. This assumption, in the Kalman framework, is 
equivalent to setting the wind’s predictor model as a 
constant-mean Gaussian process. We remark that the 
output of the filter estimate will not be a constant-mean 
Gaussian process: indeed, the filter will refine this 
estimation using actual sensor measurements as the 
posterior. This assumption leads to: 

 
�̈�𝒘 = 𝟎	                                                                   (17) 
 
Fig. 1 displays the absolute wind speed values derived 

from the Kalman filter over the first 250 seconds of the 
second flight.  
 

 
 

 
Fig. 1. First 250 s absolute wind speed of flight 2 

 
6. Results  

To validate the approach, we use the processed wind 
data of the second flight test. The selected part of the 
wind signal shown in Fig. 2 exhibits high variability, with 
a duration of over 10 minutes, peaks exceeding 8 m/s 
(around 16 knots), and variations exceeding 5 m/s 
(approximately 10 knots). This variability ensures that 
the method is tested against highly fluctuating gust 
conditions. The signal is the input of the wind model. 

 
Fig. 2. Input wind speed signal 

 
Initially, we evaluate the autocorrelation function of 

the signal. In this case, 100 lags are considered, meaning 
the signal is correlated with itself over the previous 100 
seconds. The original ACF is then fitted with the 
superposition of equation of ACF of the SDE model in 
the form (11). A mixture of eight SDEs is used. The 
fitting step is used to determine the coefficient of the 
model, shown in Table 1. The coefficients are employed 
to construct the superposition of SDEs in the form (8).  

Subsequently, the equation is integrated to obtain an 
initial synthetic signal with an autocorrelation function of 
the input data. As anticipated, the process still has a 
Gaussian probability density function, illustrated in Fig. 
3. To impose the desired probability density function of 
the data to the signal generated from the integration of 
the SDE, we employ the memoryless transformation 
method, as previously outlined. The cumulative 
distribution function of the data is first evaluated, as 
illustrated in Fig. 4. 

 

 
Fig. 3. Gaussian PDF of the synthetic signal 
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Fig. 4. CDF of data 

 
Finally, we obtained the synthetic signal with the 

desired autocorrelation function and probability density 
function. The autocorrelation function and probability 
density function are the same as in the data, as shown in 
Fig. 5. 

 
7. Conclusions  

In this paper, we presented a robust framework for 
simulating wind gusts on Venus using a set of SDEs, 
specifically a bidimensional Ornstein-Uhlenbeck process. 
Our approach accurately captures the ACF and PDF of 
measured wind signals, crucial for simulating the 
behavior of a Venus aerobot under extreme wind 
conditions. 

We tested our method using real-world wind speed 
data collected during flight tests in the Mojave Desert,  

 
demonstrating that the model can effectively replicate the 
statistical characteristics of wind speed measurements. 
The integration of an extended Kalman filter allowed for 
the precise processing of real-time wind signals, further 
enhancing the model's accuracy. 

Our findings indicate that the proposed method not 
only simplifies implementation but also provides a 
reliable tool for simulating wind conditions, which is 
essential for the successful deployment and operation of 
aerobots on Venus. However, it is important to note that 
while this paper presents a method for constructing 
stochastic models, the utility of these models for 
Venusian conditions is currently limited by the absence 
of empirical wind data for the planet. 

Future work will focus on refining the model to 
incorporate more complex wind patterns and extending 
its applicability to other planetary bodies with 
challenging atmospheric conditions. Additionally, 
further validation with a broader range of data sets and 
integration with real-time aerobot control systems will be 
pursued to enhance the practical utility of the model. 

This research contributes significantly to the field of 
planetary exploration, offering a valuable tool for 
mission planning and execution in extreme environments. 
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